H3c-technologies H3C S12500-X Series Switches Bedienungsanleitung

Stöbern Sie online oder laden Sie Bedienungsanleitung nach Router H3c-technologies H3C S12500-X Series Switches herunter. H3C Technologies H3C S12500-X Series Switches User Manual Benutzerhandbuch

  • Herunterladen
  • Zu meinen Handbüchern hinzufügen
  • Drucken
  • Seite
    / 216
  • Inhaltsverzeichnis
  • LESEZEICHEN
  • Bewertet. / 5. Basierend auf Kundenbewertungen

Inhaltsverzeichnis

Seite 1 - Installing a Fan Tray 风扇框的安装

H3C S12500-X Switch SeriesLayer 2—LAN SwitchingConfiguration Guide Hangzhou H3C Technologies Co., Ltd. http://www.h3c.com Softw

Seite 2

v Configuration procedure ····························································································································

Seite 3

89 Configuring Digest Snooping As defined in IEEE 802.1s, connected devices are in the same region only when their MST region-related configurations

Seite 4 - H3C S12500-X Switch Series

90 Step Command Remarks 3. Enable Digest Snooping on the interface. stp config-digest-snooping By default, Digest Snooping is disabled on ports. 4.

Seite 5

91 [DeviceB-Ten-GigabitEthernet1/0/1] quit [DeviceB] stp global config-digest-snooping Configuring No Agreement Check In RSTP and MSTP, the following

Seite 6 - Configuring Digest Snooping

92 device receives no agreement packet from the upstream device and sends no agreement packets to the upstream device. As a result, the designated po

Seite 7 - Configuration procedure

93 Configuration procedure # Enable No Agreement Check on Ten-GigabitEthernet 1/0/1 of Device A. <DeviceA> system-view [DeviceA] interface ten-

Seite 8

94 region during network design. However, due to possible configuration errors or malicious attacks in the network, the legal root bridge might recei

Seite 9 - Configuration prerequisites

95 Step Command Remarks 3. Enable the loop guard function for the ports. stp loop-protection By default, loop guard is disabled. Configuring port

Seite 10 - Enabling root guard

96 Enabling TC-BPDU guard When a device receives topology change (TC) BPDUs (the BPDUs that notify devices of topology changes), it flushes its forw

Seite 11 - Enabling loop guard

97 Task Command Display the statistics of TC/TCN BPDUs sent and received by all ports in the specified MSTI or all MSTIs (in IRF mode). display stp [

Seite 12

98 Configuration procedure 1. Configure VLANs and VLAN member ports: (Details not shown.) { Create VLAN 10, VLAN 20, and VLAN 30 on both Device A a

Seite 13 - Enabling TC-BPDU guard

vi Setting an encapsulation format for LLDPDUs ·································································································· 542H

Seite 14

99 # Enter MST region view, configure the MST region name as example, map VLAN 10, VLAN 30, and VLAN 40 to MSTI 1, MSTI 3, and MSTI 4, respectively,

Seite 15

100 0 Ten-GigabitEthernet1/0/3 ROOT FORWARDING NONE 1 Ten-GigabitEthernet1/0/1 DESI FORWAR

Seite 16

101 Figure 26 MSTIs mapped to different VLANs ABA BC DCBCMSTI 1 mapped to VLAN 10AD DRoot bridge Normal link Blocked linkMSTI 3 mapped to VLAN 30MS

Seite 17 - Verifying the configuration

102 Configuring loop detection Overview Incorrect network connections or configurations can create Layer 2 loops, which results in repeated transmiss

Seite 18

103 Figure 28 Inner frame header for loop detection The inner frame header for loop detection contains the following fields: • Code—Protocol sub-t

Seite 19

104 Port status auto recovery Port status auto recovery applies only to the block and no-learning loop protection actions. If the device receives no

Seite 20 - Configuring loop detection

105 Configuring the loop protection action You can configure the loop protection action globally or on specific ports. The global configuration appl

Seite 21 - Loop protection actions

106 Setting the loop detection interval With loop detection enabled, the device sends loop detection frames at a specified interval. A shorter interv

Seite 22 - Enabling loop detection

107 Configuration procedure 1. Configure Device A: # Create VLAN 100, and globally enable loop detection for the VLAN. <DeviceA> system-view

Seite 23

108 [DeviceC-Ten-GigabitEthernet1/0/1] port trunk permit vlan 100 [DeviceC-Ten-GigabitEthernet1/0/1] quit [DeviceC] interface ten-gigabitethernet 1/0

Seite 24

1 Configuring Ethernet interfaces The switch series supports Ethernet interfaces, management Ethernet interfaces, and Console interfaces. For the inte

Seite 25

109 Configuring VLANs This chapter provides an overview of VLANs and explains how to configure them. Overview Ethernet is a family of shared-media LA

Seite 26

110 Figure 31 VLAN tag placement and format A VLAN tag includes the following fields: • TPID—16-bit tag protocol identifier that indicates whethe

Seite 27

111 Step Command Remarks 5. Configure the description of the VLAN. description text The default setting is VLAN vlan-id, which is the ID of the VLAN

Seite 28 - Configuring VLANs

112 Step Command Remarks 7. Configure the expected bandwidth of the interface. bandwidth bandwidth-value By default, the expected bandwidth (in kbp

Seite 29 - Protocols and standards

113 Make sure a port is assigned to its PVID. Otherwise, when the port receives frames tagged with the PVID or untagged frames, the port filters out

Seite 30

114 Step Command Remarks 2. Enter interface view. • Enter Layer 2 Ethernet interface view: interface interface-type interface-number • Enter Lay

Seite 31 - Configuring port-based VLANs

115 Step Command Remarks 2. Enter interface view. • Enter Layer 2 Ethernet interface view: interface interface-type interface-number • Enter Lay

Seite 32

116 Step Command Remarks 2. Enter interface view. • Enter Layer 2 Ethernet interface view: interface interface-type interface-number • Enter Lay

Seite 33

117 Port-based VLAN configuration example Network requirements As shown in Figure 32, Host A and Host C belong to Department A, and access the enter

Seite 34

118 { Configure Host B and Host D to be on the same IP subnet. For example, 192.168.200.0/24. Verifying the configuration # Verify that Host A and H

Seite 35

2 Splitting a 40-GE interface and combining split 10-GE interfaces This feature is not supported on non-default MDCs. Splitting a 40-GE interface into

Seite 36

119 Configuring the private VLAN The private VLAN feature uses a two-tier VLAN structure, including a primary VLAN and secondary VLANs. This feature

Seite 37

12 0 VLAN associated with the secondary VLAN. For more information about promiscuous mode, trunk promiscuous mode, and host mode, see Layer 2—LAN Sw

Seite 38

121 Step Command Remarks 9. Return to system view. quit N/A 10. Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view. inter

Seite 39 - Configuring the private VLAN

122 • On Device B, VLAN 5 is a primary VLAN which contains uplink port Ten-GigabitEthernet 1/0/5 and is associated with secondary VLANs VLAN 2 and

Seite 40 - Configuration guidelines

123 [DeviceB-Ten-GigabitEthernet1/0/2] quit # Associate the secondary VLANs 2 and 3 with the primary VLAN 5. [DeviceB] vlan 5 [DeviceB-vlan5] priva

Seite 41 - As shown in Figure 34:

124 Untagged ports: Ten-GigabitEthernet1/0/1 Ten-GigabitEthernet1/0/2 Ten-GigabitEthernet1/0/5 VLAN ID: 2 VLAN type: S

Seite 42

125 Figure 35 Network diagram Configuration procedure 1. Configure Device B: # Configure VLAN 5 and VLAN 10 as primary VLANs. <DeviceB> sy

Seite 43

126 [DeviceB] interface ten-gigabitethernet 1/0/3 [DeviceB-Ten-GigabitEthernet1/0/3] port access vlan 3 [DeviceB-Ten-GigabitEthernet1/0/3] port priv

Seite 44

127 Name: VLAN 0005 Tagged ports: Ten-GigabitEthernet1/0/1 Untagged ports: Ten-GigabitEthernet1/0/2 Ten-GigabitEthernet1/0/3

Seite 45

128 Configuring QinQ This document uses the following terms: • CVLAN—Customer network VLANs, also called "inner VLANs," refer to VLANs th

Seite 46

3 Step Command Remarks 2. Enter the view of any 10-GE interface split from a 40-GE interface. interface interface-type interface-number N/A 3. Com

Seite 47

129 Figure 36 Single-tagged Ethernet frame header and double-tagged Ethernet frame header For correct transmission of tagged frames, H3C recommends

Seite 48 - Configuring QinQ

130 Implementations of QinQ QinQ is enabled on a per-port basis. The link type of a QinQ-enabled port can be access, hybrid, or trunk. The QinQ taggi

Seite 49

131 Configuring QinQ Enable QinQ on customer-side ports of PEs. Enabling QinQ A QinQ-enabled port tags an incoming frame with its PVID. To enable Qi

Seite 50

132 Configuring the TPID for VLAN tags TPID identifies a frame as an 802.1Q tagged frame. On the device, the TPID in the 802.1Q tag added on a QinQ-e

Seite 51 - Restrictions and guidelines

133 Setting the 802.1p priority in SVLAN tags By default, a QinQ-enabled port copies the 802.1p priority in the CVLAN tag to the SVLAN tag. For untag

Seite 52

134 Step Command Remarks 12. Configure the port to trust the 802.1p priority in incoming frames. qos trust dot1p By default, the device trusts the p

Seite 53 - Configuring the SVLAN TPID

135 Figure 38 Network diagram Configuration procedure This example assumes that the CVLANs have been configured correctly on the CEs. Configuring P

Seite 54

136 3. Configure Ten-GigabitEthernet 1/0/3 (a customer-side port): # Configure Ten-GigabitEthernet 1/0/3 as a trunk port, and assign it to VLAN 200

Seite 55 - QinQ configuration example

137 Configuring devices in the service provider network All ports on the path between PE 1 and PE 2 must allow frames from VLAN 100 and VLAN 200 to p

Seite 56

138 # Enable QinQ on the port. [PE1-Ten-GigabitEthernet1/0/1] qinq enable # Configure the port to transparently transmit frames from VLAN 3000. [PE1-

Seite 57 - Configuring PE 2

4 Step Command Remarks 7. Restore the default settings for the Ethernet interface. default N/A 8. Bring up the Ethernet interface. undo shutdown By

Seite 58

139 Configuring VLAN mapping Overview VLAN mapping re-marks VLAN tagged traffic with new VLAN IDs. H3C provides the following types of VLAN mapping:

Seite 59

140 Figure 40 Application scenario of one-to-one VLAN mapping In Figure 40, the network is planned as follows: • Each home gateway uses different

Seite 60

141 Figure 41 Application scenario of one-to-two and two-to-two VLAN mapping Site 1 and Site 2 are in VLAN 2 and VLAN 3, respectively. The VLAN ass

Seite 61 - Configuring VLAN mapping

142 Figure 42 Basic concepts of VLAN mapping One-to-one VLAN mapping Figure 43 One-to-one VLAN mapping implementation In Figure 43, after you co

Seite 62 - Distribution

143 • For the uplink traffic, after you configure one-to-two VLAN mapping on the customer-side port, the device tags the packets from a CVLAN with a

Seite 63 - VLAN mapping implementations

144 Task Remarks Configuring one-to-one VLAN mapping Configure one-to-one VLAN mapping on the wiring-closet switch as shown in Figure 40. Configurin

Seite 64 - One-to-two VLAN mapping

145 Configuring one-to-two VLAN mapping Perform one-to-two VLAN mapping on the edge devices from which customer traffic enters SP networks, on PE 1 a

Seite 65 - Two-to-two VLAN mapping

146 Step Command Remarks 1. Enter system view. system-view N/A 2. Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view. •

Seite 66

147 Figure 46 Network diagram Configuration procedure 1. Configure Switch A: # Configure customer-side port Ten-GigabitEthernet 1/0/1 as a trunk p

Seite 67

148 # Configure customer-side port Ten-GigabitEthernet 1/0/2 as a trunk port, and assign the port to original VLANs and translated VLANs. [SwitchA]

Seite 68

5 Configuring physical state change suppression on an Ethernet interface The physical link state of an Ethernet interface is either up or down. Each t

Seite 69 - 1. Configure Switch A:

149 Figure 47 Network diagram Configuration procedure 1. Configure PE 1: # Configure one-to-two VLAN mapping on customer-side port Ten-GigabitEthe

Seite 70

150 3. Configure PE 3: # Configure Ten-GigabitEthernet 1/0/1 as a trunk port, and assign the port to VLANs 100 and 200. <PE3> system-view [PE

Seite 71

151 [PE4] display vlan mapping Interface Ten-GigabitEthernet1/0/2: Outer VLAN Inner VLAN Translated Outer VLAN Translated Inner VLAN 6

Seite 72

152 Configuring LLDP Overview In a heterogeneous network, a standard configuration exchange platform ensures that different types of network devices

Seite 73

153 1. LLDPDU encapsulated in Ethernet II Figure 49 Ethernet II-encapsulated LLDPDU Table 11 Fields in an Ethernet II-encapsulated LLDPDU Field D

Seite 74 - [PE4] display vlan mapping

154 Table 12 Fields in a SNAP-encapsulated LLDPDU Field Description Destination MAC address MAC address to which the LLDPDU is advertised. It is the

Seite 75 - Configuring LLDP

155 Type Description Remarks End of LLDPDU Marks the end of the TLV sequence in the LLDPDU. Port Description Specifies the port description of the

Seite 76

156 Type Description Power Via MDI Contains the power supply capability of the port, including the PoE type (PSE or PD), PoE mode, whether PSE power

Seite 77 - LLDPDUs

157 NOTE: If the MAC/PHY configuration/status TLV is not advertisable, none of the LLDP-MED TLVs will be advertised even if they are advertisable.

Seite 78

158 • IEEE 802.1AB-2009, Station and Media Access Control Connectivity Discovery • ANSI/TIA-1057, Link Layer Discovery Protocol for Media Endpoint

Seite 79

6 Performing a loopback test on an Ethernet interface If an Ethernet interface does not work correctly, you can perform a loopback test on it to ident

Seite 80 - Work mechanism

159 Step Command Remarks 4. (Optional.) Enable LLDP. lldp enable By default, LLDP is enabled on a port. Configuring the LLDP bridge mode The foll

Seite 81 - LLDP configuration task list

160 Step Command Remarks 3. Set the LLDP operating mode. • In Layer 2 or Layer 3 Ethernet interface view: lldp [ agent { nearest-customer | neare

Seite 82

161 Step Command Remarks 3. Enable LLDP polling and set the polling interval. • In Layer 2 or Layer 3 Ethernet interface view: lldp [ agent { nea

Seite 83

162 Step Command Remarks 4. Configure the advertisable TLVs (in Layer 3 Ethernet interface view). • lldp tlv-enable { basic-tlv { all | port-desc

Seite 84 - Enabling LLDP polling

163 Step Command Remarks 1. Enter system view. system-view N/A 2. Enter Layer 2 or Layer 3 Ethernet interface view or Layer 2 aggregate interface

Seite 85

164 Step Command Remarks 2. Set the TTL multiplier. lldp hold-multiplier value The default setting is 4. 3. Set the LLDPDU transmit interval. lld

Seite 86

165 With CDP compatibility enabled on the switch, the switch can use LLDP to receive and recognize the CDP packets received from the directly-connec

Seite 87

166 Bridging Exchange Protocol (DCBX) to negotiate and remotely configure the bridge capability of network elements. DCBX has three self-adaptable

Seite 88

167 Enabling LLDP and DCBX TLV advertising To enable the device to advertise APP, ETS, and PFC data through an interface, enable LLDP globally and e

Seite 89 - Configuring DCBX

168 Step Command Remarks 4. Return to system view. quit N/A 5. Create a class, specify the operator of the class as OR, and enter class view. tra

Seite 90 - DCBX configuration task list

7 As shown in Figure 1, when both Port A and Port B forward packets at the rate of 1000 Mbps, Port C will be congested. To avoid packet loss, enable f

Seite 91 - Configuring APP parameters

169 Configuring ETS parameters ETS provides committed bandwidth. The device uses ETS parameters to negotiate with the server adapter, controls the s

Seite 92

170 Step Command Remarks 4. Return to system view. quit N/A 5. Enter Ethernet interface view. interface interface-type interface-number N/A 6. C

Seite 93

171 Step Command Remarks 3. Enable the Ethernet interface to automatically negotiate with its peer to decide whether to enable PFC. priority-flow-c

Seite 94 - Configuring ETS parameters

172 Step Command Remarks 6. (Optional.) Set the LLDP trap transmit interval. lldp timer notification-interval interval The default setting is 30 s

Seite 95 - Configuring PFC parameters

173 Figure 53 Network diagram Configuration procedure 1. Configure Switch A: # Enable LLDP globally. <SwitchA> system-view [SwitchA] lldp g

Seite 96

174 Transmit credit max : 5 Hold multiplier : 4 Reinit delay : 2s Trap interval : 30s F

Seite 97 - LLDP configuration examples

175 MED trap flag : No Polling interval : 0s Number of LLDP neighbors : 0 Number of MED neighbors : 0 Nu

Seite 98

176 Number of CDP neighbors : 0 Number of sent optional TLV : 0 Number of received unknown TLV : 5 LLDP agent nearest-nontpmr: Port statu

Seite 99

177 Number of MED neighbors : 0 Number of CDP neighbors : 0 Number of sent optional TLV : 16 Number of received unknown TLV : 0 The

Seite 100

178 [SwitchA] traffic classifier app_c operator or [SwitchA-classifier-app_c] if-match acl 4000 [SwitchA-classifier-app_c] quit # Create a traffic b

Seite 101

8 To configure PFC on an Ethernet interface: Step Command Remarks 1. Enter system view. system-view N/A 2. Enter Ethernet interface view. interfac

Seite 102 - DCBX configuration example

179 DCBX Parameter Type and Length DCBX Parameter Length: 13 DCBX Parameter Type: 2 DCBX Parameter Information Parameter Ty

Seite 103

180 Priority Group ID of Priority 4: 4 Priority Group ID of Priority 7: 7 Priority Group ID of Priority 6: 6 Prior

Seite 104

181 DCBX Parameter Length: 2 DCBX Parameter Type: 3 DCBX Parameter Information Parameter Type: Current Pad Byte Pre

Seite 105

182 PFC Enabled on Priority 2: No PFC Enabled on Priority 3: Yes PFC Enabled on Priority 4: No PFC Enabled on Priori

Seite 106

183 Configuring service loopback groups A service loopback group contains one or multiple Ethernet ports for looping packets sent out by the device

Seite 107

184 Task Command Display information about the service loopback group. display service-loopback group [ number ] Service loopback group configurat

Seite 108

185 Index Numerics 802.x 802.1 LLDPDU TLV types, 15 4 802.3 LLDPDU TLV types, 15 4 802.X 802.1Q-in-802.1Q. Use QinQ 802.x 802.1p-to-local priority

Seite 109

186 MST regional root, 70 MSTP root bridge configuration, 78 MSTP secondary root bridge configuration, 78 RSTP root bridge configuration, 78 RSTP se

Seite 110

187 loop detection protection action (Layer 2 aggregate interface), 105 loop detection protection action (Layer 2 Ethernet interface), 105 loopback

Seite 111

188 LLDP ETS parameter configuration, 169 LLDP PFC parameter configuration, 170 LLDP+DCBX TLV advertisement, 167 default Ethernet link aggregate i

Seite 112

Copyright © 2014, Hangzhou H3C Technologies Co., Ltd. and its licensors All rights reserved No part of this manual may be reproduced or transmitted i

Seite 113

9 Setting the statistics polling interval Step Command Remarks 1. Enter system view. system-view N/A 2. Enter Ethernet interface view. interface in

Seite 114

189 STP feature, 87 STP loop guard, 94 STP port state transition information output, 87 STP root guard, 93 STP TC-BPDU guard, 96 encapsulating LLDPD

Seite 115

190 member port state, 35, 37, 40 modes, 37 operational key, 36 reference port, 39 reference port choice, 37 static mode, 37 traffic redirection, 49

Seite 116

191 Ethernet aggregate interface (description), 44 Ethernet aggregate interface configuration, 44 Ethernet link aggregate interface default settings

Seite 117

192 VLAN port-based configuration, 112 , 117 Layer 2 Ethernet interface cable connection, 13 configuration, 1, 10 fiber port, 9 mode, 12 storm co

Seite 118

193 receiving, 157 TLV basic management types, 15 4 TLV LLDP-MED types, 154 TLV organization-specific types, 154 transmitting, 157 load balanci

Seite 119

194 RSTP, 96 STP, 96 VLAN, 116 management address LLDP encoding format, 162 management Ethernet interface configuration, 1 mapping MSTP VLAN-to-ins

Seite 120

195 Ethernet interface common settings configuration, 1 Ethernet interface generic flow control, 6 Ethernet interface jumbo frame support configurat

Seite 121

196 inloopback interface configuration, 15 interface bulk configuration, 18 Layer 2 Ethernet link aggregation (dynamic), 52 Layer 2 Ethernet link a

Seite 122

197 polling LLDP enable, 160 polling interval, 9 port Ethernet aggregate interface (description), 44 Ethernet aggregate interface configuration, 44

Seite 123

198 STP port priority configuration, 85 STP port role restriction, 95 STP port state transition output, 87 STP root guard, 93 STP root port, 62 STP

Seite 124

10 Configuration restrictions and guidelines When you forcibly bring up a fiber port, follow these guidelines: • The port up-mode command is mutually

Seite 125

199 configuring LLDP 802.1p-to-local priority mapping, 169 configuring LLDP advertisable TLVs, 161 configuring LLDP APP parameters, 167 configuri

Seite 126

200 configuring VLAN mapping, 14 3 , 14 6 configuring VLAN mapping (one-to-one), 14 4 , 14 6 configuring VLAN mapping (one-to-two), 14 5 , 14 8 c

Seite 127

201 specifying STP port path cost calculation standard, 83 splitting 40-GE interface into 10-GE interfaces, 2 testing Layer 2 Ethernet interface cab

Seite 128

202 configuration, 61 , 73, 74, 97 device priority configuration, 79 displaying, 96 maintaining, 96 mode set, 76 network convergence, 68 No Agreemen

Seite 129

203 IST, 70 loop detection, 61 loop guard enable, 94 maintaining, 96 mCheck, 88 mCheck (global), 88 mCheck (interface view), 88 mode set, 76 MST co

Seite 130

204 QinQ CVLAN tag, 128 QinQ SVLAN tag, 128 QinQ SVLAN tag 802.1p priority, 13 3 QinQ VLAN tag TPID value, 132 SVLAN TPID value, 132 VLAN mappi

Seite 131

205 QinQ configuration, 128 , 131 , 13 4 QinQ CVLAN tag, 128 QinQ CVLAN TPID value, 132 QinQ implementation, 13 0 QinQ SVLAN tag, 128 QinQ SVLA

Seite 132

11 Step Command Remarks 1. Enter system view. system-view N/A 2. Enter Ethernet interface view. interface interface-type interface-number N/A 3.

Seite 133

12 Configuration procedure To configure storm control on an Ethernet interface: Step Command Remarks 1. Enter system view. system-view N/A 2. (Opt

Seite 134

13 • Typically, set the MDIX mode of the interface to AutoMDIX. Set the MDIX mode of the interface to MDI or MDIX only when the device cannot determi

Seite 135 - About storm control

14 Task Command Display traffic rate statistics of interfaces in up state over the last sampling interval. display counters rate { inbound | outbound

Seite 136

15 Configuring loopback, null, and inloopback interfaces This chapter describes how to configure a loopback interface, a null interface, and an inloo

Seite 137

16 Configuring a null interface A null interface is a virtual interface and is always up, but you can neither use it to forward data packets nor can

Seite 138

17 Task Command Clear the statistics on the inloopback interface. reset counters interface

Seite 139

18 Bulk configuring interfaces You can enter interface range view to bulk configure multiple interfaces with the same feature instead of configuring

Seite 140 - Configuring a null interface

Preface The H3C S12500-X documentation set includes 14 configuration guides. These guides describe the software features for the H3C S12500-X Switch S

Seite 141

19 Step Command Remarks 4. Use available commands to configure the interfaces. Available commands vary by interface. N/A 5. (Optional.) Verify th

Seite 142 - Bulk configuring interfaces

20 Configuring the MAC address table Overview An Ethernet device uses a MAC address table to forward frames. A MAC address entry contains a destinati

Seite 143 - Preface

21 • Static entries—Static entries are manually added in order to forward frames with a specific destination MAC address out of their associated int

Seite 144 - Step Command Remarks

22 Type Description Multiport unicast MAC address entry • Learns the MAC address (for example, MAC A) of the frame, adds a dynamic MAC address entry

Seite 145 - Overview

23 Step Command Remarks 2. Add or modify a blackhole MAC address entry. mac-address blackhole mac-address vlan vlan-id By default, no blackhole MAC

Seite 146

24 Configuring a multiport unicast MAC address entry on an interface Step Command Remarks 1. Enter system view. system-view N/A 2. Enter interfac

Seite 147

25 Disabling MAC address learning on interfaces With global MAC address learning enabled, you can disable MAC address learning on a single interface.

Seite 148

26 Set the aging timer appropriately. A stable network requires a longer aging interval and an unstable network requires a shorter aging interval. A

Seite 149

27 Step Command Remarks 2. Enter Layer 2 Ethernet interface view.. interface interface-type interface-number N/A 3. Enable the device to forward fr

Seite 150

28 To avoid unnecessary floods and improve forwarding speed, make sure all cards possess the same MAC address table. After you enable MAC address tab

Seite 151

Convention Description bars, from which you select one choice, multiple choices, or none. &<1-n> The argument or keyword and argument combi

Seite 152

29 Step Command Remarks 1. Enter system view. system-view N/A 2. Enable MAC address synchronization. mac-address mac-roaming enable By default, M

Seite 153

30 Configuration procedure # Add a static MAC address entry for MAC address 000f-e235-dc71 on Ten-GigabitEthernet 1/0/1 that belongs to VLAN 1. <D

Seite 154 - Network topology icons

31 Configuring MAC Information The MAC Information feature can generate syslog messages or SNMP notifications when MAC address entries are learned or

Seite 155

32 Configuring the MAC Information mode The following MAC Information modes are available for sending MAC address changes: • Syslog—The device sends

Seite 156

33 MAC Information configuration example Network requirements Enable MAC Information on interface Ten-GigabitEthernet 1/0/1 on Device in Figure 6 to

Seite 157 - Configuring MAC Information

34 local4.info /var/log/Device/info.log In this configuration, local4 is the name of the logging facility that the log host uses to receive logs, and

Seite 158

35 Configuring Ethernet link aggregation Ethernet link aggregation bundles multiple physical Ethernet links into one logical link, called an aggregat

Seite 159

36 • Unselected—An Unselected port cannot forward traffic. Operational key When aggregating ports, the system automatically assigns each port an ope

Seite 160

37 Link aggregation modes Link aggregation has dynamic and static modes: • Static aggregation mode—Aggregation is stable. The aggregation state of t

Seite 161 - Basic concepts

38 Figure 8 Setting the aggregation state of a member port in a static aggregation group The maximum number of Selected ports in a static aggregati

Seite 162 - Configuration types

Represents a security product, such as a firewall, UTM, multiservice security gateway, or load-balancing device. Represents a security card, such as

Seite 163 - Choosing a reference port

39 LACP functions LACP offers basic LACP functions and extended LACP functions, as described in Table 3. Table 3 Basic and extended LACP functions Ca

Seite 164

40 The local system (the actor) and the remote system (the partner) negotiate a reference port by using the following workflow: 1. Compare the syst

Seite 165 - Documentation feedback

41 Figure 9 Setting the state of a member port in a dynamic aggregation group Meanwhile, the system with the higher system ID, being aware of the a

Seite 166 - LACP timeout interval

42 • A port that joins a dynamic aggregation group after the Selected port limit has been reached is placed in Selected state if it is more eligible

Seite 167

43 { Port security (see Security Configuration Guide) { 802.1X (see Security Configuration Guide) { Association between AC and cross connection (s

Seite 168

44 Step Command Remarks 2. Set the system LACP priority. lacp system-priority system-priority By default, the system LACP priority is 32768. Chan

Seite 169

45 Step Command Remarks 2. Enter Layer 2 aggregate interface view. interface bridge-aggregation interface-number N/A 3. Configure the description

Seite 170

46 The maximum number of Selected ports allowed in an aggregation group is limited by either the configured maximum number or hardware capability, wh

Seite 171

47 • When an aggregate interface is brought up, the aggregation state of ports in the corresponding aggregation group is recalculated. To shut down

Seite 172

48 Step Command Remarks 2. Configure the global link-aggregation load sharing criteria. link-aggregation global load-sharing mode { destination-ip

Seite 173

i Contents Configuring Ethernet interfaces ··········································································································

Seite 174

49 Enabling local-first load sharing for link aggregation Use the local-first load sharing mechanism in a multi-device link aggregation scenario to d

Seite 175

50 Configuration restrictions and guidelines When you enable link-aggregation traffic redirection, follow these restrictions and guidelines: • Link-

Seite 176 - Contents

51 Ethernet link aggregation configuration examples Layer 2 static aggregation configuration example Network requirements As shown in Figure 11, conf

Seite 177

52 [DeviceA] interface ten-gigabitethernet 1/0/3 [DeviceA-Ten-GigabitEthernet1/0/3] port link-aggregation group 1 [DeviceA-Ten-GigabitEthernet1/0/3]

Seite 178

53 Figure 12 Network diagram Configuration procedure 1. Configure Device A: # Create VLAN 10, and assign the port Ten-GigabitEthernet 1/0/4 to VLA

Seite 179

54 [DeviceA-Bridge-Aggregation1] quit 2. Configure Device B in the same way Device A is configured. (Details not shown.) Verifying the configuration

Seite 180

55 Figure 13 Network diagram Configuration procedure 1. Configure Device A: # Create VLAN 10, and assign the port Ten-GigabitEthernet 1/0/5 to VLA

Seite 181

56 [DeviceA] interface bridge-aggregation 2 [DeviceA-Bridge-Aggregation2] link-aggregation load-sharing mode destination-mac [DeviceA-Bridge-Aggregat

Seite 182

57 Bridge-Aggregation1 Load-Sharing Mode: source-mac address Bridge-Aggregation2 Load-Sharing Mode: destination-mac address The output shows that t

Seite 183

58 Configuring port isolation The port isolation feature isolates Layer 2 traffic for data privacy and security without using VLANs. You can also use

Seite 184

ii Configuration procedure ···························································································································

Seite 185

59 Task Command Display isolation group information display port-isolate group [ group-number ] [ | { begin | exclude | include } regular-expression

Seite 186 - Configuring port isolation

60 Verifying the configuration # Display information about isolation group 2. [Device-Ten-GigabitEthernet1/0/3] display port-isolate group 2 Port i

Seite 187

61 Configuring spanning tree protocols Spanning tree protocols eliminate loops in a physical link-redundant network by selectively blocking redundant

Seite 188

62 Basic concepts in STP Root bridge A tree network must have a root bridge. The entire network contains only one root bridge, and all the other brid

Seite 189

63 Calculation process of the STP algorithm The spanning tree calculation process described in the following sections is a simplified process for exa

Seite 190 - STP protocol packets

64 Step Actions 2 The device compares the configuration BPDUs of all the ports and chooses the optimum configuration BPDU. The following are the pr

Seite 191 - Basic concepts in STP

65 Device Port name Configuration BPDU on the port Port B2 {1, 0, 1, Port B2} Device C Port C1 {2, 0, 2, Port C1} Port C2 {2, 0, 2, Port C2} 2.

Seite 192 - Description

66 Device Comparison process Configuration BPDU on ports after comparison Device C • Port C1 receives the configuration BPDU of Port A2 {0, 0, 0, P

Seite 193 - Example of STP calculation

67 Figure 17 The final calculated spanning tree The configuration BPDU forwarding mechanism of STP The configuration BPDUs of STP are forwarded ac

Seite 194

68 The device uses the max age to determine whether a stored configuration BPDU has expired and discards it if the max age is exceeded. RSTP RSTP ach

Seite 195

iii Configuration procedure ··························································································································

Seite 196 - STP timers

69 Figure 18 Basic concepts in MSTP Figure 19 Network diagram and topology of MST region 3 MST region A multiple spanning tree region (MST regio

Seite 197 - MSTP basic concepts

70 • Same VLAN-to-instance mapping configuration • Same MSTP revision level • Physically linked together Multiple MST regions can exist in a switc

Seite 198

71 Port roles A port can play different roles in different MSTIs. As shown in Figure 20, an MST region comprises Device A, Device B, Device C, and De

Seite 199 - MST region

72 • Forwarding—The port receives and sends BPDUs, learns MAC addresses, and forwards user traffic. • Learning—The port receives and sends BPDUs, l

Seite 200

73 MSTP implementation on devices MSTP is compatible with STP and RSTP. Devices that are running MSTP and that are used for spanning tree calculation

Seite 201 - Port states

74 • Though the member ports of an aggregation group do not participate in spanning tree calculation, the ports still reserve their spanning tree co

Seite 202 - How MSTP works

75 Tasks at a glance Configuring the leaf nodes: • (Required.) Setting the spanning tree mode • (Optional.) Configuring the device priority • (Opt

Seite 203

76 Tasks at a glance Configuring the leaf nodes: • (Required.) Setting the spanning tree mode • (Required.) Configuring an MST region • (Optional.

Seite 204 - RSTP configuration task list

77 NOTE: • In STP or RSTP mode, do not specify an MSTI. Otherwise, the spanning tree configuration does not takeeffect. • In MSTP mode, if you sp

Seite 205 - MSTP configuration task list

78 Configuring the root bridge or a secondary root bridge You can have the spanning tree protocol determine the root bridge of a spanning tree throug

Seite 206

iv Configuration procedure ···························································································································

Seite 207 - Configuring an MST region

79 Configuring the device priority Device priority is a factor in calculating the spanning tree. The priority of a device determines whether the devi

Seite 208

80 devices. The network diameter is a parameter that indicates the network size. A bigger network diameter indicates a larger network size. Based on

Seite 209

81 loss for a link failure and triggers a new spanning tree calculation process. If the hello time is too short, the device frequently sends the same

Seite 210

82 Configuring the BPDU transmission rate The maximum number of BPDUs a port can send within each hello time equals the BPDU transmission rate plus t

Seite 211

83 Configuring path costs of ports Path cost is a parameter related to the rate of a port. On a spanning tree device, a port can have different path

Seite 212

84 Table 9 Mappings between the link speed and the path cost Link speed Port type Path cost IEEE 802.1d-1998 IEEE 802.1t Private standard 0 N/A 6

Seite 213 - Configuring edge ports

85 Step Command Remarks 3. Configure the path cost of the ports. • In STP/RSTP mode: stp cost cost • In MSTP mode: stp [ instance instance-list ]

Seite 214

86 Configuring the port link type A point-to-point link directly connects two devices. If two root ports or designated ports are connected over a poi

Seite 215

87 A port in auto mode sends 802.1s MSTP packets by default. When the port receives an MSTP packet of a legacy format, the port starts to send packet

Seite 216 - Configuration example

88 Step Command Remarks 4. (Optional.) Enable the spanning tree feature for the port. stp enable By default, the spanning tree feature is enabled on

Kommentare zu diesen Handbüchern

Keine Kommentare